
Taking Saratoga from
space-based ground sensors

to ground-based space sensors

Lloyd Wood
Centre for Communication Systems Research, University of Surrey

l.wood@surrey.ac.uk
Charles Smith

Commonwealth Scientific and Industrial Research Organization (CSIRO)
charles.smith@csiro.au

Wesley M. Eddy
MTI Systems

wes@mti-systems.com

Will Ivancic
NASA Glenn Research Center
william.d.ivancic@grc.nasa.gov

Chris Jackson
Surrey Satellite Technology Ltd

C.Jackson@sstl.co.uk

with thanks to

IEEE Aerospace conference, Big Sky, Montana, March 2011.

mailto:L.Wood@surrey.ac.uk
mailto:L.Wood@surrey.ac.uk
mailto:charles.smith@csiro.au
mailto:charles.smith@csiro.au
mailto:wes@mti-systems.com
mailto:wes@mti-systems.com
mailto:William.D.Ivancic@grc.nasa.gov
mailto:William.D.Ivancic@grc.nasa.gov
mailto:C.Jackson@sstl.co.uk
mailto:C.Jackson@sstl.co.uk

Saratoga -
What’s it good for?

Disaster Monitoring Constellation (DMC) satellites
built and operated by

Surrey Satellite Technology Limited (SSTL)

&

Challenges in Data Sensing, Transmission and Access
posed by New Radio Astronomy Telescopes

(Very Long Baseline Interferometers -
large distributed sensor nets)

Delivering sensor data!
2

3

Sensor data example: The Cape of Good Hope and False Bay.
False colours – red is vegetation.
Taken by UK-DMC satellite on the morning of Wednesday, 27 August 2008.
(Downloading this image also demonstrated optional “DTN bundle” use.)

DMC satellite characteristics
Let’s use the UK-DMC satellite (first-generation DMC) as an example.

Onboard platform computer and CLEO Cisco router experimental payload

Three payload computers, the Solid-State Data Recorders (SSDRs):

• one with a StrongARM processor (legacy backup, GPS reflectometry)

• two with 200MHz Motorola MPC8260 PowerPC (run imaging cameras)

• RTEMS operating system (POSIX API, BSD sockets)

• Storage Capacity on PPC SSDRs: 1 GByte or 0.5 GByte RAM.

• Embedded RTEMS OS code limit is 0.5 MByte - tiny!

• Uplink is S-Band at only 9600 bits per second

• Downlink is S-band at 8.134 Mbps (X-band systems now up to 210 Mbps)

• Datalink – Frame Relay/HDLC

• Network Protocol – IPv4 (could easily run IPv6)

• Transport Protocol (Saratoga version 0 over UDP)

• Saratoga version 0 was developed by SSTL as a replacement for an
implementation of CCSDS CFDP for simple, high-speed, low-overhead, file
delivery from Low Earth Orbit to ground over highly asymmetric links.

• UDP checksum turned off for speed as HDLC CRC provided sufficient
reliability for SSTL’s needs - and because traffic only goes one hop.

4

Asymmetry

Low-frequency dipole (70MHz - 450MHz)

Phased-array feed (450MHz - 3GHz)

New Radio Sensor Types for Astronomy

Aperture Array
(500MHz - 1GHz)

5

H1 hydrogen line
is at 1420.4MHz

Australian Square Kilometre Array Pathfinder (ASKAP)

• A next-generation radio telescope being developed by the
Commonwealth Scientific and Industrial Research
Organisation (CSIRO) that incorporates novel receiver
technologies and leading-edge Information Communication
Technology systems.

• ASKAP will be one of the world’s premier radio telescopes
and will help to answer fundamental questions about our
Universe. (And leads the way to the more powerful SKA.)

• 36 identical antennas, each 12 metres in diameter, working
together as a single instrument.

• Each dish holds 192 bi-polar phased-array feed sensors.

• Each sensor generates a 10 Gbps stream.

• A total of 6,912 individual 10 Gbps streams – almost
70,000 Gbps, or 8.44 terabytes/second (TBps).

• This is transported over optical fiber - ideally reusing
Ethernet and IP to leverage commercial technologies.

6

Murchison Radio-astronomy
Observatory (MRO) is in the

middle of absolutely nowhere.

(Deserts - clear skies, radio silence.)
7

Sensing and processing in an array

8

correlator

beamformer

beamformer

beamformer

multiple Saratoga streams delivering
real-time sensor data

supercomputer
analysis

processed datacubes
delivered rapidly as files
 with Saratoga

further delivery to post-processing and users
using traditional Internet technologies (TCP)

private links
and network

sensors
sensors

sensors
sensors

sensors
sensors

sensors
sensors

sensors
sensors

sensors
sensors

multiple Saratoga streams
delivering real-time
beamformed databeamformer

beamformer

beamformer
beamformer

beamformer
beamformer

sensor data flow
SNACK Flow

192-element
focal plane

array

Analogue-
to-Digital
Sampler

Coarse
Filter
Bank

Beam
Former

Fine
Filter
Bank

DWDM
Terminal

DWDM
Terminal

Ethernet
Switch

Correlator
Control

Computer

Antenna Murchison
Radio-astronomy

Observatory
Central SitePerth

192 x Coax 192 x 10G 64 x 10G

4 x 10G 800km 4 x 10G 1 x 10G 16 x 10G

Correlator

36

1 116

Data flow and processes in ASKAP

9

Image Data Cube

10

Declination Index (nDec)

Right Ascension
Index (nRA)

Cosmological
Red Shift Index (nZ)

1

1 1

nZ

nRA

nDec

npol = number of polarization values per sample
fsize = size in single-precision floating point numbers
 (typically multiples of four bytes)

Data Image Cube Size (bytes) = nDec nRA nZnpolfsize

values for weighting &
each Polarisation (nPol)

Image Data Cubes for
Murchison Widefield Array (MWA)

(Consists of 8,192 dual-polarization dipole antennas)

2700

2700 2700

4 Polarizations
1 Weight
@ 4 bytes each

One produced
every 12 minutes

16 Terabytes / Day

5.9 Petabytes / Year

11

2700

768

112 Gigabytes / Cube

1

1 1

nZ

nDec

Image Data Cubes for ASKAP

3,600 - 10,800

2700 2700

4 Polarizations
1 Weight
@ 4 bytes each

53 Gigabytes
to 30 Terabytes/Cube

Wallaby all sky survey
1000 Cubes
Total 3.4 Petabytes

Dingo Deep Focus area
2 x 2500 hrs (50 cubes)
5 x 500 hrs (250 cubes)
Total 2.6 Petabytes

12

1

1 1

nZ

nDec1

1 1

nZ

nDec

3,600 - 10,800

Image Data Cube transport

• Given a 10Gbps Ethernet Connection

• 3.4-Terabyte image takes

~45 minutes to transport

• 71-Terabyte visibility image takes

~15 hours to transport

• And that’s by filling the pipe completely and going
flat out at line speed.

• A reliable, high-speed transport protocol is needed.

• A single TCP-based transport flow just cannot fill this
10Gbps pipe. Don’t want to wait around for TCP slow
start and backoff to get up to speed.

13

Saratoga
A reliable, UDP-based,

file/stream/bundle transport protocol

14

What is Saratoga ?
• Version 0 developed by Surrey Satellite Technology Limited (SSTL) as a

replacement to CFDP for simple high speed, low processing, file delivery from
Low Earth Orbit to Ground over highly asymmetric links.

• Saratoga is a high-speed, UDP-based, peer-to-peer protocol, providing error-
free guaranteed delivery of files, or streaming of data.

• Send data packets out as fast as you can. No specified congestion control is
required, since data is usually only going one hop over a private link, or across
high-speed, low-congestion private networks.

• Some implementations have a rate-limiting option for restricted downstream
links where line rate may not match downstream radio link

• No specified timers means no timeouts, so Saratoga is ideal for very long
propagation delay networks (such as deep space).

• Every so often the transmitter asks for an acknowledgement from the file
receiver. The receiver can also send acks if it thinks it needs to, or to start/
restart/finish a transfer.

• Acks are Selective Negative Acknowledgements (SNACKs) indicating received
packets, and any gaps to fill with resent data, including information so that
intelligent sender rate control or congestion control can be provided if needed.

• Any multiplexing of flows is done by the Saratoga peers.

• Saratoga is an excellent protocol to use in asymmetric network topologies.
15

Saratoga is a reliable transport over UDP

Simple sliding window with selective acknowledgments.

• The HOLESTOFILL list on the receiver requests the
transmitter to re-send frames that have not been properly
received (a SNACK) by sending a STATUS with the list of
HOLESTOFILL.

• The receive window only advances when offsets are
contiguous. The left edge of the transmit window does not
advance until the holes have been acknowledged by a
HOLESTOFILL frame with an advanced offset.

• The UDP checksum is used per packet to cover both the
header and payload. It is consistent, but not that strong
(one’s complement), and does not provide end-to-end
guarantees for payloads sent using multiple packets.

• An optional end-to-end checksum, using one of CRC32/
MD5/SHA-1, over the entire file being transferred, increases
confidence that a reliable copy has been made, and that
fragments have been reassembled correctly.

16

Optional features of Saratoga version 1

Specified to the IETF in an experimental internet-draft. Adds features.

Major features

• Scalable to handle large files. 16-bit descriptors for efficiency with
small files. 128-bit descriptors cope with huge files up to 2128 bytes.
32- and 64-bit descriptors most useful.

• Streaming of data is supported. This allows Saratoga to be used for
real-time delivery outside the file-based store-and-forward paradigm.

Minor features

• Supports link-local multicast to advertise presence, discover peers
and for delivery to multiple receivers simultaneously for e.g. file or
code image updates. (Will outperform TFTP trivial file transfer.)

• Optional UDP-Lite use for tolerating errors in payloads and minimizing
checksum computation overhead. The UDP-Lite checksum covers a
minimum of IP/UDP-Lite/Saratoga headers. The header content is
always checked so that the information about the data is error-free.

• Optional “DTN bundle” delivery as a “bundle convergence layer”.
Shown with tests from the UK-DMC satellite.

17

Why Saratoga instead of FTP/TCP ?

• For high throughput and link utilization on dedicated links, where
a single TCP flow cannot fill the link to capacity.

• For links where TCP’s assumptions about loss/congestion/
competition simply don’t hold. i.e. High speed bulk transfer.

• There is no such thing as “slow-start” specified in Saratoga.

• Able to cope with high forward/back network asymmetry (>850:1).

• Long path-delay use – eventually TCP will fail to open a
connection because its SYN/ACK exchange won’t complete. TCP
has many unwanted timers.

• Simplicity. TCP is really for a conversation between two hosts;
needs a lot of code on top to make it transfer files. A focus on just
moving files or streams of data makes sequence numbering
simpler.

• Having SNACKs means that handling a sequence number
wraparound when in streaming or bundling mode becomes easy.

18

Why Saratoga instead of FTP/TCP ?

19

time t

tra
ns

fe
r r

at
e

M
bp

s channel errors leads to
packet losses and resends

TCP
slow start mode

TCP congestion
avoidance mode

TCP fast recovery
cuts its rate

Saratoga

TCP

TCP assumes loss indicates
congestion and slows its rate

header overheads

link rate

link capacity
unused by TCP

What Saratoga does not do

• There is no MTU discovery mechanism, so you have to know the
maximum packet size your network can transmit at. i.e. dictated by
the frame size. This is okay for your own private network, but would
be troublesome if used across the Internet.

• Saratoga does not include “slow-start” or congestion control.
That is considered bad and unsociable behaviour on the Internet.
Saratoga just blasts away on a link with no regard for other flows -
which is the exact behaviour that makes it desirable in private
networks and these environments!

• Simulations have shown that it is possible to implement
congestion control mechanisms in Saratoga if desired - see our
parallel University of Oklahoma paper describing Sender-Based
TCP Friendly Rate Control.

• Saratogaʼs timestamp option can be used to implement such
closed-loop mechanisms.

• Simple open-loop rate-limiting output to XMbps can also allow
Saratoga to coexist with other traffic.

20

Saratoga Transactions

21

Saratoga Transactions

GET Get a named file from the peer

21

Saratoga Transactions

GET Get a named file from the peer

GETDIR Get a directory listing of files from the peer

21

Saratoga Transactions

GET Get a named file from the peer

GETDIR Get a directory listing of files from the peer

DELETE Delete a named file from the peer

21

Saratoga Transactions

GET Get a named file from the peer

GETDIR Get a directory listing of files from the peer

PUT Put a named file or stream data to the peer

DELETE Delete a named file from the peer

21

Saratoga Transactions

GET Get a named file from the peer

GETDIR Get a directory listing of files from the peer

PUT Put a named file or stream data to the peer

PUTDIR Put a directory listing of local files to the peer

DELETE Delete a named file from the peer

21

Saratoga Frame Types

Saratoga Frame Types

BEACON Sent periodically. Describes the Saratoga peer:

Identity (e.g. EID)

capability/desire to send/receive packets.

max. file descriptor handled: 16/32/64/128-bit.

Saratoga Frame Types

BEACON Sent periodically. Describes the Saratoga peer:

Identity (e.g. EID)

capability/desire to send/receive packets.

max. file descriptor handled: 16/32/64/128-bit.

REQUEST Asks for a file initiating ʻgetʼ transaction
get file
get directory listing
delete a file.

Saratoga Frame Types

BEACON Sent periodically. Describes the Saratoga peer:

Identity (e.g. EID)

capability/desire to send/receive packets.

max. file descriptor handled: 16/32/64/128-bit.

REQUEST Asks for a file initiating ʻgetʼ transaction
get file
get directory listing
delete a file.

METADATA Sent at start of transaction. Initiates a ʻputʼ transaction.
Describes the file, bundle or stream:

set identity for transaction
file name/details, including size.

set descriptor size offsets to be used for this transaction

(16/32/64/128-bit pointer sizes.)

Saratoga Frame Types

BEACON Sent periodically. Describes the Saratoga peer:

Identity (e.g. EID)

capability/desire to send/receive packets.

max. file descriptor handled: 16/32/64/128-bit.

REQUEST Asks for a file initiating ʻgetʼ transaction
get file
get directory listing
delete a file.

METADATA Sent at start of transaction. Initiates a ʻputʼ transaction.
Describes the file, bundle or stream:

set identity for transaction
file name/details, including size.

set descriptor size offsets to be used for this transaction

(16/32/64/128-bit pointer sizes.)

DATA Actual Data.
Uses descriptor of chosen size to indicate offset for data
segment in the file/bundle or stream.

Saratoga Frame Types

BEACON Sent periodically. Describes the Saratoga peer:

Identity (e.g. EID)

capability/desire to send/receive packets.

max. file descriptor handled: 16/32/64/128-bit.

REQUEST Asks for a file initiating ʻgetʼ transaction
get file
get directory listing
delete a file.

METADATA Sent at start of transaction. Initiates a ʻputʼ transaction.
Describes the file, bundle or stream:

set identity for transaction
file name/details, including size.

set descriptor size offsets to be used for this transaction

(16/32/64/128-bit pointer sizes.)

DATA Actual Data.
Uses descriptor of chosen size to indicate offset for data
segment in the file/bundle or stream.

STATUS Missing Data Offsets / Error & Status Messages
Selective negative ack (ʻsnackʼ) HOLESTOFILL data.
Set left window edge for successful transfer so far
List of offsets and lengths indicate missing ʻholesʼ in data.

Transaction GET or GETDIR

Receiver Sender

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA
STATUS optional / resume transfer

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1
STATUS optional / resume transfer

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

STATUS optional / resume transfer

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

STATUS optional / resume transfer

DATA 3frame lost

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

DATA 4

STATUS optional / resume transfer

DATA 3frame lost

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

DATA 4

STATUS optional / resume transfer

DATA 3frame lost

STATUS I need 3 again

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

DATA 3

DATA 4

STATUS optional / resume transfer

DATA 3frame lost

STATUS I need 3 again

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

DATA 3

DATA 4

STATUS optional / resume transfer

DATA 3frame lost

DATA 5

STATUS I need 3 again

23

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

DATA 3

DATA 4

STATUS optional / resume transfer

DATA 3frame lost

DATA 5

STATUS I need 3 again

STATUS All received OK
23

Transaction PUT or PUTDIR

Receiver Sender

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

DATA 2

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

DATA 2

DATA 3frame lost

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

DATA 2

DATA 3frame lost

DATA 4

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

DATA 2

DATA 3frame lost

DATA 4
STATUS I need 3 again

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

DATA 2

DATA 3

DATA 3frame lost

DATA 4
STATUS I need 3 again

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

DATA 2

DATA 3

DATA 5

DATA 3frame lost

DATA 4
STATUS I need 3 again

24

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

DATA 2

DATA 3

DATA 5

DATA 3frame lost

DATA 4
STATUS I need 3 again

STATUS All received OK

24

Saratoga Version 1 implementations
PERL (NASA Glenn Research Center)

• Sequential file transfer

• Rate-limiting implemented

C++ (Wes Eddy and NASA Glenn Research Center)

• Discovery

• Multiplexed file transfer

• Hooks for bundling and streaming

• Rate-limiting to be implemented

C (Charles Smith under contract to Cisco Systems)

• Implementation licensed to CSIRO by Cisco

• Built for Speed (Raw I/O)

• Streaming to be implemented in FPGA

• File transfer may be implemented in FPGA

25

Saratoga Version 1 implementations
PERL (NASA Glenn Research Center)

• Sequential file transfer

• Rate-limiting implemented

C++ (Wes Eddy and NASA Glenn Research Center)

• Discovery

• Multiplexed file transfer

• Hooks for bundling and streaming

• Rate-limiting to be implemented

C (Charles Smith under contract to Cisco Systems)

• Implementation licensed to CSIRO by Cisco

• Built for Speed (Raw I/O)

• Streaming to be implemented in FPGA

• File transfer may be implemented in FPGA

25

We hope to make some of these implementations
available to the public.

Conclusions
• Saratoga is a simple, reliable, transport protocol that can be

implemented on low-power low-speed embedded systems,
and still give high performance. Should also be
implementable in FPGAs and ASICs.

• If you have a high-speed private network and you want to get
as much data as possible moved quickly and reliably
between peers, then you need a simple, reliable transport
protocol.
• Saratoga is a good choice for this application space.

(Thatʼs why Saratoga has been in use since 2004 to
download images from SSTLʼs DMC satellites.)

• Radio astronomy has high-speed private networks, and
needs to move a massive amount of data around. So weʼre
implementing Saratoga for radio astronomy.

26

